42 research outputs found

    Data-Driven Assessment of Deep Neural Networks with Random Input Uncertainty

    Full text link
    When using deep neural networks to operate safety-critical systems, assessing the sensitivity of the network outputs when subject to uncertain inputs is of paramount importance. Such assessment is commonly done using reachability analysis or robustness certification. However, certification techniques typically ignore localization information, while reachable set methods can fail to issue robustness guarantees. Furthermore, many advanced methods are either computationally intractable in practice or restricted to very specific models. In this paper, we develop a data-driven optimization-based method capable of simultaneously certifying the safety of network outputs and localizing them. The proposed method provides a unified assessment framework, as it subsumes state-of-the-art reachability analysis and robustness certification. The method applies to deep neural networks of all sizes and structures, and to random input uncertainty with a general distribution. We develop sufficient conditions for the convexity of the underlying optimization, and for the number of data samples to certify and localize the outputs with overwhelming probability. We experimentally demonstrate the efficacy and tractability of the method on a deep ReLU network

    Projected Randomized Smoothing for Certified Adversarial Robustness

    Full text link
    Randomized smoothing is the current state-of-the-art method for producing provably robust classifiers. While randomized smoothing typically yields robust â„“2\ell_2-ball certificates, recent research has generalized provable robustness to different norm balls as well as anisotropic regions. This work considers a classifier architecture that first projects onto a low-dimensional approximation of the data manifold and then applies a standard classifier. By performing randomized smoothing in the low-dimensional projected space, we characterize the certified region of our smoothed composite classifier back in the high-dimensional input space and prove a tractable lower bound on its volume. We show experimentally on CIFAR-10 and SVHN that classifiers without the initial projection are vulnerable to perturbations that are normal to the data manifold and yet are captured by the certified regions of our method. We compare the volume of our certified regions against various baselines and show that our method improves on the state-of-the-art by many orders of magnitude.Comment: Transactions on Machine Learning Research (TMLR) 202

    Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing

    Full text link
    While prior research has proposed a plethora of methods that enhance the adversarial robustness of neural classifiers, practitioners are still reluctant to adopt these techniques due to their unacceptably severe penalties in clean accuracy. This paper shows that by mixing the output probabilities of a standard classifier and a robust model, where the standard network is optimized for clean accuracy and is not robust in general, this accuracy-robustness trade-off can be significantly alleviated. We show that the robust base classifier's confidence difference for correct and incorrect examples is the key ingredient of this improvement. In addition to providing intuitive and empirical evidence, we also theoretically certify the robustness of the mixed classifier under realistic assumptions. Furthermore, we adapt an adversarial input detector into a mixing network that adaptively adjusts the mixture of the two base models, further reducing the accuracy penalty of achieving robustness. The proposed flexible method, termed "adaptive smoothing", can work in conjunction with existing or even future methods that improve clean accuracy, robustness, or adversary detection. Our empirical evaluation considers strong attack methods, including AutoAttack and adaptive attack. On the CIFAR-100 dataset, our method achieves an 85.21% clean accuracy while maintaining a 38.72% ℓ∞\ell_\infty-AutoAttacked (ϵ\epsilon=8/255) accuracy, becoming the second most robust method on the RobustBench CIFAR-100 benchmark as of submission, while improving the clean accuracy by ten percentage points compared with all listed models. The code that implements our method is available at https://github.com/Bai-YT/AdaptiveSmoothing

    Asymmetric Certified Robustness via Feature-Convex Neural Networks

    Full text link
    Recent works have introduced input-convex neural networks (ICNNs) as learning models with advantageous training, inference, and generalization properties linked to their convex structure. In this paper, we propose a novel feature-convex neural network architecture as the composition of an ICNN with a Lipschitz feature map in order to achieve adversarial robustness. We consider the asymmetric binary classification setting with one "sensitive" class, and for this class we prove deterministic, closed-form, and easily-computable certified robust radii for arbitrary ℓp\ell_p-norms. We theoretically justify the use of these models by characterizing their decision region geometry, extending the universal approximation theorem for ICNN regression to the classification setting, and proving a lower bound on the probability that such models perfectly fit even unstructured uniformly distributed data in sufficiently high dimensions. Experiments on Malimg malware classification and subsets of MNIST, Fashion-MNIST, and CIFAR-10 datasets show that feature-convex classifiers attain state-of-the-art certified ℓ1\ell_1-radii as well as substantial ℓ2\ell_2- and ℓ∞\ell_{\infty}-radii while being far more computationally efficient than any competitive baseline.Comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023

    Quantitative Assessment of Robotic Swarm Coverage

    Full text link
    This paper studies a generally applicable, sensitive, and intuitive error metric for the assessment of robotic swarm density controller performance. Inspired by vortex blob numerical methods, it overcomes the shortcomings of a common strategy based on discretization, and unifies other continuous notions of coverage. We present two benchmarks against which to compare the error metric value of a given swarm configuration: non-trivial bounds on the error metric, and the probability density function of the error metric when robot positions are sampled at random from the target swarm distribution. We give rigorous results that this probability density function of the error metric obeys a central limit theorem, allowing for more efficient numerical approximation. For both of these benchmarks, we present supporting theory, computation methodology, examples, and MATLAB implementation code.Comment: Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Porto, Portugal, 29--31 July 2018. 11 pages, 4 figure

    National Athletic Trainers' Association Position Statement: Preventing Sudden Death in Sports

    Get PDF
    To present recommendations for the prevention and screening, recognition, and treatment of the most common conditions resulting in sudden death in organized sports

    Robust SARS-CoV-2 T cell responses with common TCR?? motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells

    Get PDF
    Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%–75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response
    corecore